fbpx

Cancer research develops new drug to enhance cancer treatment

Professor Ruth Ganss courtesy of Harry Perkins Institute of Medical ResearchCancer researchers at the ACRF grant recipient, Harry Perkins Institute of Medical Research have developed a new drug that could be used to repair blood vessel defects and allow for more targeted and effective cancer treatment delivery.

Current treatments like chemotherapy and immunotherapy can struggle to enter a tumour because the blood vessels that fuel it have become malformed.

Tumours require a lot of nutrients so many times this causes blood vessels to re-direct towards the tumour, leading to abnormalities in the vessels.

The drug that was developed by Woodside Professor Ruth Ganss and her team discovered that smooth muscle cells that line blood vessels to give them shape and help them pump blood often break down in tumours.

Once the smooth muscle cells break down, the blood vessel becomes leaky, reducing blood flow and preventing chemotherapy and immune cells from travelling into the tumour.

Professor Ganss said the new drug works by repairing the smooth muscle cells and returning normal blood flow to the vessels, allowing anti-cancer drugs to reach the tumour’s core.

“To achieve greater absorption of anti-cancer drugs, the blood vessels are really key,” Professor Ganss said. “Helping stem the spread of cancer.”

Professor Ganss said the defect in smooth muscle cells lining blood vessels in cancer could also be a catalyst for the cancer to spread.

“It could be that once the smooth muscle cells break down and the blood vessels become leaky, cancer cells are able to slip out of the tumours and migrate through the bloodstream to spread to different parts of the body.”

“We are currently investigating whether our drug could help stem the spread of cancer in a patient by repairing the leaky blood vessels.”

The original news article was published on the Harry Perkins website.

The Australian Cancer Research Foundation has supported Harry Perkins Institute of Medical Research by providing two grants, totalling AUD 3.6million, towards cutting edge cancer research equipment and technology.

Cancer Research to Benefit from Twitter for Cells

ACRF, Australian Cancer Research Foundation, cancer charity, Cancer Research, cancer research fundraising, Cancer Research Grants, cancer scientists, charity foundation, current cancer research, Fighting cancer, Funding research, Types of cancer, Professor Alistair Forrest, Harry Perkins Institute of Medical Research

An international team of researchers have completed a study into cell behaviour, providing insight into how different, specialised cell types communicate as a cohesive network.

The researchers have produced the first map of cell-to-cell communication which shows the division of labour between cell types and reveals the ways cells use proteins to pass hundreds of messages between each other. This will help advance cancer research in the future.

The lead author, Professor Alistair Forrest, recently joined the Harry Perkins Institute of Medical Research in WA as Laboratory Head of Systems Biology and Genomics to continue his work with a renewed focus on cancer. Professor Forrest says systems biology studies all elements (typically genes or proteins) simultaneously to see how they work together in a system (or network) instead of focusing on only one or two genes at a time.

“What we have revealed in this new research is that cells have many ways of talking to each other.” Imagine twitter for cells – hundreds of cell types telling each other what is happening via hundreds of different messages.

Professor Forrest says the work has important implications for medicine. “The proteins involved are actually well known to the general public. Insulin, human growth factor and leptin are important in diabetes, height and obesity. This type of signalling is also very important in our immune response to infectious diseases. It’s also important in cancer – in particular neuroblastoma and lung cancer.”

The researchers believe that further investigation will provide answers into what happens to this intercellular information in cancer cells and how cancer avoids the immune system. It is hoped that this research will eventually help identify new therapeutic targets to improve treatments for people battling cancer.

The original article was published on the Harry Perkins Institute of Medical Research, click here to read more.